Как найти наибольший общий делитель для двух чисел

При решении задач по математике в начальных классах иногда требуется найти наибольший общий делитель, или сокращенно — НОД. Однако не все учащиеся знают правильный алгоритм этой операции, а также путают ее с НОК (наименьшим общим кратным). Чтобы не совершать таких ошибок, специалисты-математики разработали универсальные алгоритмы отличия и нахождения искомых значений.

Как найти наибольший общий делитель для двух чисел

Общие сведения

Специалисты перед обучением рекомендуют составить список базовых знаний, необходимых для нахождения наибольшего общего делителя и наименьшего общего кратного. Он состоит из таких элементов:

Наибольший общий делитель

  1. Определения величин.
  2. Признаки делимости чисел.
  3. Разложение на простые элементы или множители.
  4. Алгоритмы или методики нахождения.

Разложение на простые элементы

Простые множители — числа, которые делятся только на единицу или на эквивалентную величину, т. е. 7/1 и 7/7. Разложение величины на простые элементы — найти совокупность чисел, произведение которых и будет составлять искомое значение. Например, 30=3*5*2. Для выполнения этой операции математики разработали специальный алгоритм:

  1. Написать значение.
  2. Определить по признакам делимости первый множитель.
  3. Выполнить операцию деления.
  4. Подобрать второй множитель для величины, полученной в 3 пункте.
  5. Реализовать пункты со 2 по 4 включительно.

Однако для понимания принципа работы алгоритма, нужно выполнить разложение на простые значения на практике. Например, для 176 реализация методики имеет следующий вид:

Ученики решают

  1. 176.
  2. 2: 176/2=88.
  3. 11: 88/11=8.
  4. 2: 8/2=4.
  5. 2: 4/2=2.
  6. 2: 2/2=1.

Определение НОК

НОК находится также посредством разложения на множители, но алгоритм существенно отличается от НОД. Он имеет следующий вид:

  1. Разложить величины на множители.
  2. Взять наименьшее и дополнить его недостающими элементами.
  3. Вычислить искомое значение НОК.

Чтобы понять принцип работы алгоритма, его нужно реализовать на практике. Для числовых значений 18 и 12 он имеет такой вид:

  1. 18=3*3*2.
  2. 12=2*2*3.
  3. НОК=12*3=36.

Следовательно, наименьшим общим кратным двух чисел является 36. Искомую величину нужно находить в алгебре для приведения обыкновенных дробей к общему знаменателю при выполнении арифметических операций сложения и вычитания. Следует отметить, что операцию можно выполнять не только для двух, но и для трех чисел. При этом алгоритм существенно усложняется.

Примеры решения

Одной из сложных задач является следующая: найти наибольший общий делитель чисел 32, 66 и 84. Для решения можно воспользоваться одним из способов. Оптимальным из них является разложение на множители:

  1. 32=2*2*2*2*2.
  2. 66=11*3*2.
  3. 84=2*3*2*2*2*2.
  4. НОД=2.

По методике Евклида решать не рекомендуется, т. к. это усложнит вычисления. Основной принцип физико-математических дисциплин — оптимизация расчетов, т. е. нужно искать способ с наименьшим количеством преобразований и расчетов.

В следующей задаче требуется осуществить поиск НОД для 66, 121, 77 и 110. В этом случае также рекомендуется разложить на простые множители все 4 числа. Поиск решения выполняется по такой методике:

Решение примеров

  1. 66=11*3*2.
  2. 121=11*11.
  3. 77=11*7.
  4. 110=11*5*2.
  5. НОД=11.

Если рассмотреть 2 этих примера, можно сделать вывод, что считать НОД довольно просто. Далее нужно найти НОК для 22 и 32. Это осуществляется по такой методике:

  1. 22=11*2.
  2. 32=8*4=2*2*2*2*2.
  3. НОК=11*2*2*2*2*2=22*16=352.

Еще одним типом задачи является одновременное нахождение НОД и НОК для чисел 45, 85, 94 и 96. Решение имеет следующий вид:

  1. 45=5*3*3.
  2. 85=17*5.
  3. 94=2*47.
  4. 96=2*2*3*2*2*2.
  5. НОД=1 (нет общих множителей, кроме единицы).
  6. НОК=5*3*3*17*2*47*2*2*2*2*2=1150560.

В математике встречаются более сложные задачи. Одна из них имеет такую формулировку: НОД двух чисел эквивалентен 9, первое число равно 90 и больше второго. Необходимо найти второе ближайшее целое значение. Решается задание по такому алгоритму:

  1. 90=9*10.
  2. 81=9*9.
  3. НОД=9.

Задача решается методом подбора, поскольку по условию ближайшая целая величина эквивалентна 81.

Таким образом, нахождение НОД является довольно простой операцией, если следовать алгоритму и иметь базовые знания.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
tarologiay.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: